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Military rotorcraft are constrained by a number of operational limits designed to protect 
the structural integrity and controllability of the aircraft. There is interest in developing 
advanced control systems that provide Carefree Maneuvering capability on future 
rotorcraft, so that pilots can fly the entire flight envelope without requiring excessive 
workload to monitor limits. Recent advances in numerical algorithms and computing 
technologies such as neural networks are valuable tools in the implementation of such a 
control system. The present work is focused on developing advanced prediction algorithms 
for a comprehensive collective axis limit avoidance system for rotorcraft. The system is 
designed to simultaneously prevent exceedances of the continuous and transient 
transmission torque limits, transient RPM limit and engine temperature torque limit. The 
system is also used to assist in One Engine Inoperative (OEI) recovery and autorotation. A 
dynamic trim estimation algorithm using offline trained neural networks and polynomial 
curve-fits for torque prediction is used to calculate constraints on the collective stick for 
continuous torque limits. Different configurations of torque prediction are evaluated for 
possible implementation in existing and future rotorcraft. A peak response estimation 
algorithm based on linear model of aircraft dynamics is used for transient limit prediction. 
The system is tested using a high fidelity, non-linear simulation model of the UH-60A Black 
Hawk helicopter. Results were generated for a variety of maneuvers in non-real-time 
simulations using a simple feedback controller to simulate the pilot.  A stick limiting method 
that combines the precision of Automatic Flight Control System (AFCS) limiting with the 
limit over-ride capability of tactile cueing is proposed. 

Nomenclature 
A, b, C      = state space dynamic matrices 
e, eqs        = error signals 
E1, E2       = output response parameters  
Komg       = proportional feedback gain, ft-lb-s/rad 
Pamb, Tamb      = ambient temperature and pressure, psi, Rankine 
Q       = total torque, ft-lb 
Qactual        = measured torque, ft-lb  
Qpred, Qpredicted    = torque predicted by neural network, ft-lb 
QEngineTemp, QOEI   = engine temperature and One Engine Inoperative torque limit, ft-lb 
u, v, w, p, q, r, φ, θ, ψ = body velocities, angular rates and Euler angles, ft/s, rad/s, deg 
u       = control input vector (stick displacement) 
Vx, Vy, Vz      = x, y, z components of air velocity at main rotor hub, ft/s 
Vtot, Vd      = total and descent velocity, ft/s 
x       = state vector 
y       = output vector 
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Δ     = variation from trim position 
Ω       = rotor rpm, rad/s 
ρ       = air density, lb/ft3 

! 

"col , 

! 

" ped      = collective and pedal position, in 

! 

"col
*        = critical control position, in 
eff

col!        = stick response to pilot input for stick limiting, in 
 
Subscripts: 
0     = initial condition / normal operating condition 
e     = trim value 
lim     = limiting value 
highlim, lowlim  = upper and lower limit values 
 

I. � Introduction 
ECENTLY there has been increased interest in achieving carefree handling / maneuvering (CFM) on modern 
rotorcraft through the use of advanced flight controls and cueing systems. The terms “Carefree Handling” or 

“Carefree Maneuvering” refer to the capability of a pilot to fly throughout the operational flight envelope without 
requiring significant workload to monitor and avoid exceeding structural, aerodynamic or control limits.1 A number 
of studies have shown that handling qualities are degraded as pilots attempt to perform aggressive maneuvers, and 
this is largely due to the requirement to monitor and avoid envelope limits associated with the structural, 
controllability, and engine performance constraints on the aircraft.1-4 Pilots must typically be conservative when 
maneuvering near structural limits that are not easily perceived. The operational effectiveness, safety, and reliability 
of military rotorcraft would be increased if pilots could fly the full envelope without concern for limits.4 A number 
of novel systems have been developed that predict the onset of limits and then cue the pilots of approaching limits 
using tactile feedback.5-14 Tactile cueing allows the pilot to maneuver to the edge of the envelope while keeping their 
eyes and concentration focused on performing the desired task. In addition to cueing, there is also the potential of 
addressing envelope limits in the AFCS or through a combination of cueing and AFCS limiting.3 

Limit prediction algorithms often play a critical role in carefree maneuvering (CFM) systems. The algorithms are 
used to predict the onset of limits and to calculate the allowable control motion in order to avoid the limit. Recent 
advances in numerical algorithms and computing technologies such as neural networks are valuable tools in 
designing the prediction algorithms needed for CFM control systems. The present work presents a number of 
advances and improvements on prediction algorithms previously developed in Refs. 6-12. The algorithms are used 
for a comprehensive collective axis limit avoidance system on a military helicopter. A subset of the systems 
presented here was used in a tactile cueing system tested in piloted simulation.13 In the present study, the system is 
used for providing envelope limiting through the Automatic Flight Control System (AFCS) by constraining the 
collective input. The system is tested in non-realtime simulation using a high fidelity non-linear simulation model of 
the UH-60A helicopter. 

II. � Collective Axis Limit Avoidance System 
The two most critical parameters associated with the collective axis are torque and rotor speed. The torque 

response to the collective control consists of both a transient oscillation and a steady-state response. The transient 
torque should not exceed the absolute torque limit of the transmission. The steady-state torque limit should not 
exceed the continuous torque limit of transmission for a significant amount of time. Exceeding the transient limit for 
any period of time, or exceeding the continuous torque limit for an extended period of time can result in damage to 
the gearbox. This will reduce the life of the gearbox and can potentially result in a failure. In certain situations, the 
engine torque limit might be more critical than the transmission limit. The engine torque limit is associated with the 
maximum allowable temperature in the turbine, and is a function of ambient conditions. The engine fuel controller is 
designed to prevent the engines from exceeding the turbine temperature limit by limiting the fuel flow to the engine. 
Therefore, if the pilot applies a collective input that causes the engine torque limit to be exceeded, the engine cannot 
supply the torque required by the rotor to rotate at the given RPM. This results in a droop in the rotor RPM. The 
engine torque limit becomes important in One Engine Inoperative (OEI) condition, i.e. when one engine fails to 
operate, or when operating in high altitude/hot day condition. Also, collective stick inputs cause fluctuations in RPM 

R 
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due to changing torque levels. Large fluctuations in RPM can create rotor stability and controllability problem in 
rotorcraft. 

A schematic of the collective axis carefree maneuvering system is shown in Fig. 1. Transmission torque limit 
and engine temperature limit are steady-state torque limits. A neural network based dynamic trim prediction 
algorithm6 is used for predicting the steady-state limits. A peak response estimation algorithm7 using a linear model 
of aircraft dynamics is used for predicting the transient limits associated with transient torque and transient RPM. 
These prediction algorithms generate the upper and lower limits on the collective stick. These limits can be used to 
generate tactile cues or can be used by the AFCS to ensure limits are not exceeded. 
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Fig. 1  Schematic of collective stick limit avoidance system. 

III.� Continuous Torque Limit 

A. System Implementation 
A schematic implementation of the continuous torque limit avoidance system is shown in Fig. 2. A dynamic trim 

prediction algorithm detailed in Ref. 6 is used for predicting the continuous torque limit. The algorithm requires a 
functional representation of quasi-steady torque in trim flight condition. Analytical equations for calculating the 
torque are relatively complex, computationally intensive and are not suitable for implementing in realtime. 
Conventional methods like table lookup are not feasible for representing nonlinear functions with large number of 
variables over a wide range of operating condition. Neural Networks offer the best alternative solution because of 
their computational efficiency and their ability to map complex non-linear functions with required accuracy. The 
data required for training the neural network can be generated using a simulation model or flight test data. There are 
concerns that neural network adds complexity to the control system, and makes software validation difficult. For this 
purpose, a simple polynomial curve fit can be used for function approximation instead of a neural network. For the 
present study, both neural networks and polynomial curve fits are investigated. However, an analytical model or 
table look-up could also be used. 

The quasi-steady torque is a function of aircraft states and control inputs: 
  
 

! 

Qpred = f (x,u) (1) 
 
It can be assumed that the torque coefficient remains constant with altitude. Thus, it suffices to generate the 

training data at a constant altitude. The torque predicted by the neural network can then be scaled by the density 
ratio to adjust the difference between the actual altitude and the prediction altitude. It is also scaled by the rotor 
speed to adjust changes in rotor speed: 
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The predicted torque of the neural net will not always be accurate due to modeling errors, variation in weight and 
mass properties, and the variation in the performance of different aircraft and rotor systems. The adaptive scheme 
developed by Bateman et al.14 is used for correcting the predicted torque. The adaptation algorithm accounts for 
low-frequency errors in actual quasi-steady torque and the torque predicted by the neural net. The corrected torque is 
compared with the limiting torque (

! 

Qlim ). The limiting torque is the most restrictive of all the quasi-steady torque 
limits. For normal operating condition, it is the minimum of the gearbox transmission limit and the engine 
temperature torque limit. Computing the torque limit under the special operating conditions of One Engine 
Inoperative (OEI) recovery and autorotation will be explained in the following sections.  
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Fig. 2  Schematic representation of continuous torque limit avoidance algorithm. 

To determine the critical control margin vector, the function f in Eq. (1) is linearized at the operating point using 
the Taylor series expansion. 

 

 
  

! 

y(x,u + "u) = f (x,u) +
#f

#u
"u +H.O.T.  (3) 

 
The proximity of the limit boundary is approximated from the linearized equations as the sensitivity of function f 

to the controls. Since we are only interested in the collective stick margin, the previous sensitivity function is 
evaluated only for the collective stick position. It is evaluated numerically from the neural net as a first order central 
difference: 
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$#col %0

f (x,# ped ,#col + $#col ) & f (x,# ped ,#col & $#col )

2$#col
 (4) 

 
Dividing the torque difference by the collective stick sensitivity gives the collective stick control margin: 
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The sum of the control margin and the current stick position gives the limiting stick position: 
  
 

! 

"col
*

= "col + #"col
*   (6) 

 

B. Neural Network Training and Implementation 
The data required for training the neural network can be obtained using flight tests or a simulation model. For the 

present work, a simulation model of the UH-60A Black Hawk (GENHEL)15 is used. The data is generated for 
various trim conditions. The objective is to include all the flight conditions that might be encountered in a dynamic 
trim flight. For the given weight and velocity, the vertical flight path angle is varied through 180 deg to cover 
descent and climb conditions and horizontal flight path angle is varied through 360 deg to cover the forward flight, 
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side-slip and backward flight. These angles are varied independent of others to cover the velocity vector in all the 
three dimensions. The velocity is varied from zero to 140 knots and weight is varied from 11000 lb to 20000 lb. The 
velocity and weight are varied independently and for each case the flight path angles are varied to cover all the data 
points. This data covers the trim points for straight-line flight. To cover the trim data for turning flight, the same 
procedure is repeated with various turning rates. The turning rates of up to ±30 degree/sec are considered. With this 
procedure, around 43000 data points are generated. The number of data points reduces with increasing velocity as 
the aircraft looses the capability to trim at these extreme flight conditions. 
 MATLAB® is used to train a 3-layer feed forward neural net. A hyperbolic tangent basis function is used in first 
two layers with 8 neurons in the first layer and 5 neurons in the second layer. A linear basis function with one 
neuron is used for the third layer. The neural network inputs are normalized with respect to their minimum and 
maximum values to generate the data range between -1 and 1. A Levenberg-Marquardt back-propagation algorithm 
is used for training of the network. 

Using a large number of variables as inputs to the neural net increases their accuracy, but reduces the 
computational efficiency. Since this algorithm needs to be implemented in real time, the computational efficiency 
plays an important role in determining the number of input variables. Furthermore, sensors required to measure 
these input variables put constraints on the selection of variables. In this study, four different methods of torque 
prediction have been evaluated. The data generation and training procedure is the same for all the neural networks. 

C. Methods of Torque Prediction 
Four different methods of torque prediction have been considered in the present work. Methods 1, 2 and 3 use 

neural networks, while Method 4 uses polynomial curve fit for function approximation. Regression plots for each 
method are shown in Figs. 3-6. A prediction error comparison of the methods is shown in Fig. 7. The figure 
compares percentage error and Root Mean Squared (RMS) Error in the torque prediction. 

 

 
Fig. 3  Regression plot using Method 1. 

 
Method 1: Air Velocities at Hub and Control Inputs 

The torque prediction function in Eq. (1) can be represented using three components of air velocity at main rotor 
hub and collective and pedal position: 

  
 ( )pedcolzyxpred VVVfQ !! ,,,,=  (7) 

 
where Vx, Vy, Vz are the local velocities at the main rotor hub and, 

! 

"col  and 

! 

" ped  are collective and pedal positions 
respectively. Figure 3 shows the regression plot for the trained neural net. It shows the comparison between the 
predicted values of the neural net and the actual training data used for training the neural net. As shown in Fig. 7, the 
error in torque prediction is less than 3.8% for 99% of the data. The Root Mean Squared (RMS) Error for the entire 
dataset is 1% for this method. 

This neural net represents a fairly accurate model for torque prediction. The collective and pedal stick positions 
can be easily measured, but measuring air velocities at the hub is a difficult task. It requires a low airspeed 
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measurement system in the hub which is rotating at very high speed. Even though this neural net provides good 
results with the simulation model, the required sensor upgrading makes it very expensive for practical 
implementation. Such a system might be available on future aircraft, but we should consider other models which are 
easier to implement on existing aircraft without sacrificing much accuracy of prediction. 

 
Method 2: Total Velocity, Yaw Rate, Descent Velocity and Control Input 

This model uses total velocity, Vtot, descent velocity, Vd, yaw rate, 

! 

˙ " , collective position, 

! 

"col , and pedal 
position, 

! 

" ped , as input variables: 
 

 ( )pedcoldtotpred VVfQ !!" ,,,, &=   (8) 
 
The total velocity can be measured using a pitot tube. The descent velocity can be measured using a vertical 

speed measurement system, which measures the rate of change of barometric altitude. Yaw rate can be measured 
using a rate gyro. The collective stick and pedal positions can also be easily measured. All of the required variables 
can be measured using sensors that are typically installed on an aircraft. Hence, this model is suitable for practical 
implementation on existing aircraft. The regression plot for this Neural Net is shown in Fig. 4. The error is less than 
6.1% for 99% of the data, and the RMS error for the entire dataset is 1.5%. 

 

 
Fig. 4  Regression plot using Method 2. 

 
Method 3: Low Velocity Correction Model 

The neural net discussed previously provides a good solution for practical implementation of the torque limiting 
algorithm. The total velocity can be measured using a pitot tube. However, for rotorcraft operating in hover and low 
speed flight, the pitot tube measurement can be contaminated by rotor downwash effects. Also, pitot tubes are not 
very accurate at measuring low airspeeds. Hence, accurate measure of velocity may not be available for these flying 
conditions. Typically, no airspeed measurement is possible below a certain threshold. In this case, we assume the 
airspeed measurement shows 30 knots for all flights below 30 knots speed. Above 30 knots, the pitot tube is out of 
the rotor downwash and velocity indicator shows the actual velocity. 

Since, only velocities above 30 knots are available for measurement, a correction is needed for training the 
neural network. All velocities below 30 knots are treated as 30 knots while training the network. 

  

 

! 

0 < Vtot measured
< 30kts" Vtot = 30kts

30kts < Vtot measured
" Vtot = Vtot measured

 (9) 

 
The regression plot for this correction model is shown in Fig. 5. The error is less than 5.7% for 99% of the data, 

and the RMS error for the entire dataset is 1.5%. The error is actually slightly better than that of Method 2 despite 
the fact that the network has no specific airspeed information below 30 knots. In this evaluation, about 50% of the 
data points were below 30 knots. The RMS error for the data point below 30 knots was 1%, compared to 0.63% for 
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Method 2. It should be noted that the torque prediction is a function of five variables, including collective input and 
rate of descent, which have a much larger effect on torque than the airspeed in the low speed flight regime. A 
number of random factors such as the total number training cycles and the initial guess of the network weights can 
have small effects on the final error results. One can assume that the low velocity correction has essentially no effect 
on the accuracy of the torque prediction. The method is more practical for implementation on existing aircraft where 
low airspeed data is not available. 

 

 
Fig. 5  Regression plot using Method 3. 

 
Method 4: Second Order Curve Fit 

The neural network offers a novel way to represent complex non-linear functions. However, there are concerns 
that neural networks add complexity to the control system, and may make software validation more difficult. A 
simple second order polynomial curve-fit may be a viable alternative to the neural network. It uses the same input 
variables as defined in Eq. (8). The equation representing this second order curve fit is: 
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x = [Vtot ,Vd , ˙ " ,#col ,# ped ]
T

Qpred = x
T
Ax + Bx +C
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B = 138.31 -6454.6 -168.49 123.31 -90.96[ ]

C = 9461.5

 (10) 

 
The total velocity is measured in knots, descent velocity is measured in ft/sec, yaw rate is measured in rad/sec 

and collective and pedal positions are measured in percentage position. The regression plot for this curve-fit is 
shown in Fig. 6. The RMS error for this curve fit is 3.3%. The error is less than 12.7% for 99% of the data and 
within 7% for 95% of the data. This implies that this curve fit provides sufficient accuracy over most of the dataset. 
There is a noticeable scatter of prediction error at lower torque values. These data points are associated with small 
descent angles in high speed forward flight. Inaccuracies at these flight conditions might not be critical since the 
torque values are relatively low and the aircraft would not be flying near a limit. 
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Fig. 6  Regression plot using Method 4. 
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Fig. 7  Prediction error comparison. 

IV. � Engine Temperature Limit 
In normal operating conditions the transmission torque limit is critical. But, when operating in a high altitude / 

hot day condition, the engine temperature limit is important. The engine torque is limited by the maximum allowable 
temperature in turbine. The turbine temperature depends on the ambient temperature and pressure as well as the 
torque output of the engine. This limit is most critical when operating at high altitudes on a hot day.  

In normal operating condition, the engine fuel controller works as an RPM governor. It adjusts the fuel flow rate 
to keep the rotor RPM constant. But, when the turbine temperature approaches its critical value, the fuel controller 
adjusts the fuel flow rate to keep the turbine temperature below the critical temperature limit. In this condition, if the 
pilot performs a maneuver that requires more torque than the engine can provide, the rotor RPM droops. The droop 
in rotor RPM can cause a significant controllability problem. Hence, it is necessary to predict the maximum engine 
torque available corresponding to the critical temperature limit at the given operating conditions.  

The maximum available engine torque is modeled as a function of ambient temperature and pressure: 
  
 

! 

QEngineTemp = g(Pamb ,Tamb )  (11) 
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For the present study, the turbine temperature limit is set to 2004°R. A set of engine torque and turbine 

temperature data points were generated for various inlet temperatures and pressures. A second order polynomial is 
used to correlate the engine torque limit as a function of ambient temperature and pressure:  

  

 

! 

QEngineTemp = 17378Pamb + 526.43Tamb - 0.89844Pamb
2

- 23.615PambTamb - 0.47399Tamb
2
-146,110

  (12) 

 
where, pressure is in psi, temperature is in degree Rankine and torque is in ft-lb.  

V. � One Engine Inoperative Limit 
The One Engine Inoperative (OEI) limit corresponds to the maximum available torque when one engine fails to 

operate. In this operating condition, the objective is to recover quickly from the OEI without significant loss of 
altitude. If the aircraft is climbing at low speed (for example during a takeoff) one engine will not provide sufficient 
power to continue climbing. To recover from OEI, the pilot needs to trade the potential energy for the kinetic energy 
by descending. After reaching the power bucket, the pilot can start climbing again. Throughout the maneuver, the 
operational engine is operating at its highest capacity and the engine temperature limit is important. During the 
recovery from OEI emergencies, the strategy is often to hold the rotor RPM at some optimal value for recovery. The 
pilot should use maximum available power from one engine, which usually corresponds to the rotor RPM drooped 
to some fixed percentage of the normal operating RPM (for example 95%).  

The maximum torque available by both engines for the given ambient temperature and pressure is known from 
engine temperature limit given in Eq. (12). When one engine fails, only half of this torque is available. Hence the 
engine temperature torque limit is divided by two to generate the torque limit for OEI recovery: 

  

 
2

EngineTemp

OEI

Q
Q =   (13) 

 
This torque limit is usually lower than the transmission limit and acts as a critical torque limit for OEI recovery. 

In any case, the transmission limit can be ignored in this emergency flight condition. 
The optimal rotor RPM for recovery through OEI is different from the normal operating RPM. For the present 

work, 95% of the normal operating RPM is assumed to be the optimal RPM for recovery.13 A simple proportional 
controller is applied to the continuous torque limit to adjust the desired RPM: 

  
 )(* 0!"!+= omgOEIlim KQQ  (14) 
 
As discussed previously, when the torque required exceeds the maximum torque available from the engine, the 

fuel controller stops operating as a RPM governor and switches to a turbine temperature regulator mode, and the 
RPM is allowed to droop. The amount of RPM droop is directly related to how much the torque required exceeds the 
engine torque limit. Thus, if the aircraft is operating at the prescribed torque limit, Qlim, then the amount of RPM 
droop can be regulated by adjusting the torque limit. The simple proportional control law in Eq. (14) achieves this 
objective. If the RPM is lower than the optimal RPM, the torque limit is lowered, which alleviate the torque load and 
allows the rotor to speed up. On the other hand, if the rotor is over-speeding, then the torque limit is increased, 
which slows down the rotor to bring the RPM to the optimal value. For the present work, the gain 

! 

Komg  is selected 
as 5000ft-lb·s/rad and the optimal RPM for OEI recovery, Ω0, is 25.65 rad/sec (95%). 

VI. � Autorotation Limit 
In autorotation the descending velocity turns the rotor, so the engines do not need to generate any torque. 

However, the rotor still generates lift so that the aircraft descends at a constant speed. When both engines in the 
helicopter fail to operate, the pilot needs to quickly lower the collective in order to keep the rotor RPM constant. The 
collective axis cueing system will cue the pilot for optimal collective position to reach the autorotation and to 
maintain a constant RPM in autorotation. Since there is no torque available from engines, the autorotation torque 
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limit corresponds to the zero torque value. The fluctuations in the RPM are adjusted using the same proportional 
controller as discussed for the OEI limit. Thus, the autorotation torque limit becomes: 

  
 

! 

Qlim = Komg * ("#"0)  (15) 
 

VII. � Transient Torque and Transient RPM Limit 
The transient torque and transient RPM are peak response critical limits.7 The peak response critical limits 

require limiting the transient peak of the response. The algorithm is designed to estimate the transient peak of the 
limited parameter that occurs immediately after the control input. The algorithm needs only to predict a very near 
term response of the limited parameter, typically less than two seconds. Hence, the linear model of fast dynamics of 
the rotorcraft provides sufficient model for the prediction. 

The dynamics of the limited parameter can be described as a linear single input single output state variable 
model: 

  

 

! 

"˙ x = A"x + b"u

"y = C"x
 (16) 

 
where Δy, Δx, and Δu are the perturbation of the limited parameter, the state vector, and the control input from 

equilibrium: 
  
 

! 

"x = x # xe; "u = u # ue; "y = y # ye  (17) 
 
The response of the previous system to the step input from non-zero initial condition can be written as: 
  

 

! 

y t( ) = "y t( ) + ye

= ye +CeAt"x0 +CA#1 eAt # I( )b"u
  (18) 

 
The initial condition for the output vector can be used in place of the equilibrium value of the output: 
  

 

! 

y0 " y 0( ) = ye +C#x0

y t( ) = y0 + E1 t( )#x0 + E2 t( )#u

where  E1 t( ) =C e
At
$ I( ) 

and  E2 t( ) =CA$1
e
At
$ I( )b

 (19) 

 
The Δu term is the magnitude of a step control input. In the real-time algorithm, at each frame of execution, the 

current measured (or estimated) value of the state vector and the limited parameter are used as the initial condition. 
The peak responses can then be expressed as the maximum and/or minimum value of y(t) over some time interval. A 
constraint on the control (a softstop location) can then be calculated by solving for the magnitude of a control step 
input that causes the peak response to just reach a limit. 

Solve for Δu such that 
 

 

! 

max
t

y0 + E1 t( )"x0 + E2 t( )"u[ ] = yhighlim

and

min
t

y0 + E1 t( )"x0 + E2 t( )"u[ ] = ylowlim

 (20) 

 
The solution can be achieved using an iterative search algorithm. The solution can be done in a computationally 

efficient manner by: 1) Calculating offline and storing the values of the E1 and E2 matrices for some time range (for 
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some set of fixed time intervals), 2) Constraining the search to the maximum control range and using a bisection 
algorithm with guaranteed convergence. Thus, based on the current value of the limited parameter and state vector 
(y0 and x0), the algorithm finds the control input that causes the limit to be reached in the peak response.  

For the present work, a linear model at hover position of the coupled yaw/heave/rotor speed dynamics of the 
UH-60A presented in Ref. 16 was used. It is a seventh order model that includes the following states: rotor speed, 
yaw rate, vertical speed, inflow velocity, engine torque, fuel flow, and integrated rotor speed. The control input is 
the collective stick input. The model structure is shown next in Eq. (21), 
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The model structure is well suited for modeling both the transient rotor RPM dynamics and transient torque 
dynamics. Thus, this same model can be used to implement a peak response estimation algorithm for both the rotor 
RPM limit and the transient torque limit. It was found that the linear model at hover position also works well at low 
speeds. Linear models can be scheduled with velocity to improve the accuracy of prediction at higher speeds. It is 
also possible to replace the E1 and E2 matrices in Eq. (20) by neural networks as a function of flight conditions. 

The linear model was extracted from the non-linear simulation response data using frequency domain 
identification methods. A varying frequency sinusoidal input (a “chirp” input) to the collective stick was simulated, 
and the frequency response of the torque and rotor speed responses were identified. The parameters in the state-
space model shown in Eq. (21) were then derived to fit the linear model frequency response to that of the non-linear 
simulation model.  The Comprehensive Identification from Frequency Responses (CIFER®) software was used for 
this purpose.17 CIFER® has proven to be a powerful tool in the aerospace industry (particular in the rotorcraft sector) 
for deriving accurate linear models for use in flight control design, and it was found that this tool was also well 
suited for extracting a linear model for the peak response estimation algorithm. Figures 8 and 9 show the frequency 
response identified from the non-linear model compared to that of the linear model used in the algorithm as 
calculated by CIFER®. There is reasonable correlation in the frequency responses. 

VIII. � Limit Avoidance 
The constraints on the collective stick for quasi-steady limits are calculated using Eq. (6) and for transient limits 

using Eq. (20). The limit avoidance system must prioritize the various constraints and either cue the pilot 
appropriately or constrain the pilot control input through the AFCS. The algorithms presented previously are 
independent of the method used for limit avoidance. The actual implementation of a cueing system depends on the 
pilot preferences and must be designed based on piloted simulation. This is beyond the scope of present work. For 
the present study, the stick motion is constrained through the AFCS. In this type of approach, the sensitivity of 
collective stick to control input is altered. For example, if the pilot is operating near the limit, then the efficiency of 
collective stick is decreased. This means that pilot needs to put larger stick input to get the desired response. If the 
pilot control input is 

! 

"col  then the effective control input observed by the aircraft is 

! 

"col
eff . 

One such stick limiting function, hereafter referred as “Limit Over-ride Approach,” is shown in Fig. 10. In this 
approach, the stick response is divided into three regions: Limiting region, Dead-band region and Recovery region. 
In the Limiting region the stick sensitivity to the pilot input slowly decreases till it reaches zero at the end of the 
Limiting region. It is followed by the Dead-band region with zero stick sensitivity. Pilot input in this region does not 
affect the aircraft response. This region is followed by the Recovery region with increased sensitivity to the 
collective stick. This region allows the pilot to over-ride the limit in emergency situation. It also recovers the “lost” 
stick input in Limiting and Dead-band region by allowing higher stick sensitivity. A polynomial function is mapped 
to represent each region. 
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Fig. 8 Linear model of rotor speed response extracted using CIFER®. 

 

 
Fig. 9  Linear model of torque response extracted using CIFER®. 
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In Fig. 10, the points A, B, C and D represent the boundary points for each region. The point L represents the 
stick limit. The distance x is measured from the limit. This function implemented for the present study has 0.8 
inches wide limiting region, 0.4 inches wide dead-band region and 1.5 inches wide recovery region for 10 inches of 
maximum stick travel. Two boundary conditions are forced at each point: 
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The polynomial equation obtained using the previous boundary conditions is represented next: 
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Fig. 10  Limit over-ride approach for constrained stick motion.  

 
This stick function can be implemented using a combination of AFCS limiting and tactile cueing on the stick. 

The limiting function can be incorporated in the AFCS which modifies the pilot control input. At the same time, 
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tactile cueing is applied which allows the pilot to discriminate each region. This can be achieved by applying stick 
shaker cues with distinct frequency for each region. This method for stick limiting combines the precision of AFCS 
limiting with the limit over-ride capability of stick cueing. Stick shakers are relatively easy to implement and are 
routinely used on commercial aircrafts for stall warning.  

A special case of this limit over-ride approach is a “Dead-band Approach” where the dead band region extends 
till the end of stick travel without any recovery region. This approach does not allow the pilot to over-ride the limit. 
Though it is not suitable for implementation in flight, it is most useful for validation and testing of limiting 
algorithms. This approach has been used in the present work for non-real-time simulations using GENHEL as 
discussed in the flowing section. 

IX. � Results 
The algorithms discussed in the preceding sections have been tested using the GENHEL15 simulation of the UH-

60A helicopter. All results were performed in non-real-time simulation without a human pilot. Instead, maneuvers 
are performed using either prescribed control inputs or using a simple pilot model.12 The pilot model is a feedback 
controller which uses proportional plus integral compensation to perform a maneuver given lateral, longitudinal and 
descent velocities. The pilot model effectively calculates the controls required to perform the specified maneuver. In 
order to test the limiting algorithms, the control inputs are then filtered through the stick limiting functions as 
discussed in the previous section. In the following discussion, “the pilot” refers to the pilot model and not an actual 
human pilot. 

Figure 11 demonstrates the effectiveness of the algorithms for a simple step input. Here, a simple maneuver is 
simulated where the pilot starts from hover and gives 3 inches of collective stick spanned over 2 seconds. If no 
collective stick limiting is applied, torque exceeds the transmission torque limit. Using the dead-band limiting 
approach, the stick motion follows the collective stick limit boundary. This results in the steady-state torque not 
exceeding the torque limit. Thus, the pilot can avoid the torque limit by staying within the dead-band region. But, in 
emergency conditions the pilot can move the stick in the recovery region and can attain almost the same altitude and 
rate of climb as if there is no stick limiting applied.  

Figure 12 shows the comparison of different methods of torque prediction. As discussed before, Method 1 uses 
air velocities at hub and control inputs while Methods 2, 3, and 4 use total velocity, yaw rate, descent velocity and 
control inputs as input variables. Methods 1, 2, and 3 use neural net prediction while Method 4 uses a second order 
curve fit. The figure shows that there is little difference between predictions of each method. This result confirms 
the fact that approximations made for each method are feasible and have little effect on the torque prediction. Thus, 
any method can be used for torque prediction depending upon the requirements. 

 
Fig. 11  Comparison of dead-band and limit over-ride stick limiting approaches with no limiting. 
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Fig. 12  Comparison of torque prediction methods. 

 
On the UH-60A, the transmission torque limit is critical for most of the operating conditions. But, when 

operating at high altitude, the engine torque limit is more important. Figure 13 shows the results obtained for 
simulation of a simple acceleration maneuver. The helicopter starts from hover at 6000ft with the ambient 
temperature of 113°F and pressure of 13.6psi. At this operating condition, the engine temperature limit is lower than 
the transmission torque limit. From the hover position, the pilot commands two inches of collective stick input 
spanned over two seconds. Then the pilot holds the stick at that position for two seconds and then returns it to its 
hover position in next two seconds. If no stick limiting is applied, torque exceeds the engine temperature limit and 
even the transmission torque limit. But, if the collective stick follows the limit boundary, torque does not exceed the 
engine temperature limit. 

Figure 14 shows the switching of the continuous torque limit from the transmission torque limit to the engine 
temperature torque limit as altitude increases. The pilot starts climbing from 5200ft with the ambient temperature of 
100°F and pressure of 13.5psi. The pilot commands the climbing rate of 20ft/sec. At this altitude, the pilot hits the 
transmission torque limit. But, as the aircraft starts gaining the altitude, the engine temperature limit becomes 
critical. Without the limiting, pilot overlooks the limits which results in large fluctuations in rotor RPM. But, with 
the limiting the pilot can avoid the large RPM droop. 

The OEI limit is tested for Category A takeoff maneuver. The Category A takeoff maneuver starts with the 
helicopter in hover over the rooftop of a building. Pilot initiates a climb and at the same time starts to build up 
airspeed by moving forward. One engine fails after some time. In the simulated maneuver, the pilot starts to climb 
and move forward from hover, and after 6 seconds one engine fails. The simulation results for this maneuver are 
shown in Fig. 15. The RPM limit is set to 25.65 rad/sec, which is 95% of the normal operating RPM (27 rad/sec). 
Without the limiting, the results show large RPM droop, but with the limiting the algorithm is successful in forcing 
the RPM to its desired value. 

When both engines fail to operate, the only option for the pilot is to enter autorotation. The pilot should quickly 
lower the collective in order to avoid a large RPM droop. Further, the pilot needs to adjust the collective in order to 
avoid over-speeding of the rotor. Figure 16 shows the autorotation results obtained using simulation with and 
without the limit avoidance system engaged. The results show that if no corrections are made to the collective stick, 
the pilot runs into the danger of over-speeding the rotor. But, the limiting system guides the pilot to maintain the 
optimal RPM for recovery from autorotation. 



SAHANI AND HORN 

 447 

 
Fig. 13 Engine Temperature limit evaluation with and without limiting. 

 

 
Fig. 14 Continuous torque limit switching from transmission limit to engine temperature limit. 

 Transient limits are most likely to exceed when the pilot moves the collective stick rapidly. A simple quick bob-
up/bob-down maneuver is performed where the pilot starts from hover and moves the stick rapidly through 2 inches. 
The pilot holds the stick at that position for 5 seconds, then moves the stick rapidly down by 4 inches, holds there 
for 2 seconds and then returns the stick back to the hover position. Results for this simulation are shown in Fig. 17. 
Torque and RPM are presented in percentage values. The torque exceeds the limit when no limiting is applied. But, 
with the limiting, steady-state torque does not exceed the continuous torque limit and also the transient peak is 
within the desired limits. Also, the RPM shows a large fluctuation when no limiting is applied. These fluctuations 
can be avoided by a small variation in collective stick when the limiting is applied. 



SAHANI AND HORN 

 448 

 
Fig. 15 One Engine Inoperative limit (OEI) with RPM recovery. 

 
The previous results are mainly focused on evaluating the performance of either the steady-state limit avoidance 

algorithm or the transient limit avoidance algorithm individually. In flight, constraints on the stick can be highly 
dynamic during aggressive maneuvers. Different limits become critical for different flight conditions and stick 
motion. The most critical of these limits becomes the constraint on collective stick. Figure 18 demonstrates the 
dynamic nature of the limits and the effectiveness of the algorithm in determining the critical limit. The figure shows 
that during 0-10 second period, the stick first hits the RPM limit followed by the transient torque limit and then the 
continuous torque limit. The same trend is followed for the stick motion between 15-25 second period. During the 
downward stick motion at 10 seconds, the stick hits the lower RPM limit. The resulting torque and RPM are also 
shown in the figure. Transient torque, continuous torque and RPM do not exceed the limits. This illustrates the 
effectiveness of the algorithm in avoiding multiple limits. 

 
Fig. 16  Autorotation performance with and without limiting. 
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Fig. 17 Evaluation for transient torque and transient RPM limit with and without limiting. 

 

 
Fig. 18  Interaction of multiple limit boundaries. 

X. Conclusion 
The objective of the present research was to develop a comprehensive collective axis limit avoidance system 

suitable for practical implementation in existing rotorcrafts. The system was simultaneously able to handle both 
continuous and transient limits. A dynamic trim estimation algorithm was used to predict the onset of continuous 
torque limits, which includes transmission torque limit and engine temperature torque limit. The continuous torque 
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prediction function (required by this algorithm) was approximated using a neural network. A second order 
polynomial curve-fit was also evaluated to replace the neural net. Different configurations of input variables were 
considered for their possible implementation in existing and future rotorcraft. A second-degree polynomial curve-fit 
was used for approximating engine temperature torque limit. The minimum of the transmission torque limit and the 
engine temperature torque limit was used for limiting collective stick. A peak response prediction algorithm using 
linear model of aircraft dynamics was used for predicting stick constraints associated with transient torque and 
transient RPM limits. Special limits associated with One Engine Inoperative (OEI) recovery and autorotation were 
evaluated. A new limit over-ride approach for stick limiting was introduced. 

The conclusions drawn from this study are 
1) When approximating the continuous torque prediction function, using air velocities at the hub and collective 

and pedal position provides good accuracy but would require expensive sensor upgrading in existing helicopters. 
With some reduction in accuracy, measurements of total velocity, yaw rate, descent velocity, and collective and 
pedal position provide a reasonable prediction using existing sensors. Even if low velocity measurements are not 
available the system has reasonable accuracy.  

2) Use of second order curve fits for the torque prediction resulted in substantial reduction in the accuracy of the 
torque prediction. However, simulation results showed that this method of torque prediction might still be feasible 
when combined with an adaptive scheme to account for bias errors in the prediction. The simplicity of this algorithm 
might be desirable for commercial applications which are governed by highly restrictive certification norms for 
flight control system design. 

3) A simple adaptive scheme to account for bias error in the continuous torque prediction using measured torque 
values seems to provide reasonable results when there are errors in the torque prediction function. 

4) The continuous torque prediction algorithm was also effective for avoiding engine temperature limits. Using a 
simple approximation of the engine temperature limit as a function of ambient temperature and pressure, this torque 
limit can be substituted for the transmission limit when appropriate. Moreover, the switching of stick constraint from 
transmission torque limit to engine temperature torque limit at high altitude was found to be smooth in the 
simulations. 

5) The peak response estimation algorithm appeared to be effective in preventing violation of transient torque 
and rotor speed limits. The algorithm was designed using a linear model in the hover condition, but was shown to be 
effective over a range of low airspeeds. 

6) The simulation results for OEI and autorotation showed that the algorithm may be effective in helping pilots 
perform emergency procedures in a safe manner. The desired RPM can be maintained by following the stick limit 
generated by these algorithms. 

7) Simulation results showed that the algorithms can be applied for multiple interacting limits in the collective 
axis and provide cueing or control limiting in a reasonable manner. 

8) The limit over-ride approach for stick limiting can be implemented by limiting the stick motion through the 
AFCS while cueing the pilot using stick shaker cues to distinguish each region in the stick travel. The method could 
combine the precision of AFCS limiting with limit over-ride capability of stick cueing. Stick shakers are a relatively 
cheaper upgrade option for conventional collective sticks. The acceptance of such a system would be dependent on 
handling qualities and pilot preference issues, and thus further piloted simulation analysis of the system is 
warranted. 
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